Waveform diversity of electric organ discharges: the role of electric organ auto-excitability in Gymnotus spp.
نویسندگان
چکیده
This article shows that differences in the waveforms of the electric organ discharges (EODs) from two taxa are due to the different responsiveness of their electric organs (EOs) to their previous activity (auto-excitability). We compared Gymnotus omarorum endemic to Uruguay (35 degrees South, near a big estuary), which has four components in the head to tail electric field (V(1) to V(4)), with Gymnotus sp. endemic to the south of Brazil, Paraguay and Argentinean Mesopotamia (25 degrees South, inland), which shows a fifth component in addition to the others (V(5)). We found that: (a) the innervation pattern of the electrocytes, (b) the three earlier, neurally driven, EOD components (V(1) to V(3)), and (c) their remnants after curarisation were almost identical in the two taxa. The equivalent electromotive forces of late components (V(4) and V(5)) increased consistently as a function of the external current associated with the preceding component and were abolished by partial curarisation in both taxa. Taken together these data suggest that these components are originated in the responses of the electrocytes to longitudinal currents through the EO. By using a differential load procedure we showed that V(4) in G. omarorum responded to experimental changes in its excitation current with larger amplitude variations than V(4) in Gymnotus sp. We conclude that the differences in the EOD phenotype of the two studied taxa are due to the different EO auto-excitability. This, in turn, is caused either by the different expression of a genetic repertoire of conductance in the electrocyte membrane or in the wall of the tubes forming the EO.
منابع مشابه
Species-Specific Diversity of a Fixed Motor Pattern: The Electric Organ Discharge of Gymnotus
Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fi...
متن کاملPost-natal development of the electromotor system in a pulse gymnotid electric fish.
Some fish emit electric fields generated by the coordinated activation of electric organs. Such discharges are used for exploring the environment and for communication. This article deals with the development of the electric organ and its discharge in Gymnotus, a pulse genus in which brief discharges are separated by regular silent intervals. It is focused on the anatomo-functional study of fis...
متن کاملChanges in electric organ discharge after pausing the electromotor system of Gymnotus carapo.
During their entire lives, weakly electric fish produce an uninterrupted train of discharges to electrolocate objects and to communicate. In an attempt to learn about activity-dependent processes that might be involved in this ability, the continuous train of discharges of intact Gymnotus carapo was experimentally interrupted to investigate how this pausing affects post-pause electric organ dis...
متن کاملProximate and ultimate causes of signal diversity in the electric fish Gymnotus.
A complete understanding of animal signal evolution necessitates analyses of both the proximate (e.g. anatomical and physiological) mechanisms of signal generation and reception, and the ultimate (i.e. evolutionary) mechanisms underlying adaptation and diversification. Here we summarize the results of a synthetic study of electric diversity in the species-rich neotropical electric fish genus Gy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 212 Pt 21 شماره
صفحات -
تاریخ انتشار 2009